Skip to content

Module mot.object_detection.train

View Source
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python

# -*- coding: utf-8 -*-

# File: train.py

import argparse

import six

assert six.PY3, "This example requires Python 3!"

from tensorpack import *

from tensorpack.tfutils import collect_env_info

from tensorpack.tfutils.common import get_tf_version_tuple

from mot.object_detection.dataset import register_mot

from mot.object_detection.config import config as cfg

from mot.object_detection.config import finalize_configs

from mot.object_detection.data import get_train_dataflow

from mot.object_detection.eval import EvalCallback

from mot.object_detection.modeling.generalized_rcnn import ResNetC4Model, ResNetFPNModel

try:

    import horovod.tensorflow as hvd

except ImportError:

    pass

if __name__ == '__main__':

    # "spawn/forkserver" is safer than the default "fork" method and

    # produce more deterministic behavior & memory saving

    # However its limitation is you cannot pass a lambda function to subprocesses.

    import multiprocessing as mp

    mp.set_start_method('spawn')

    parser = argparse.ArgumentParser()

    parser.add_argument('--load', help='Load a model to start training from. It overwrites BACKBONE.WEIGHTS')

    parser.add_argument('--logdir', help='Log directory. Will remove the old one if already exists.',

                        default='train_log/maskrcnn')

    parser.add_argument('--config', help="A list of KEY=VALUE to overwrite those defined in config.py", nargs='+')

    if get_tf_version_tuple() < (1, 6):

        # https://github.com/tensorflow/tensorflow/issues/14657

        logger.warn("TF<1.6 has a bug which may lead to crash in FasterRCNN if you're unlucky.")

    args = parser.parse_args()

    if args.config:

        cfg.update_args(args.config)

    register_mot(cfg.DATA.BASEDIR)  # add the mot datasets to the registry

    # Setup logging ...

    is_horovod = cfg.TRAINER == 'horovod'

    if is_horovod:

        hvd.init()

    if not is_horovod or hvd.rank() == 0:

        logger.set_logger_dir(args.logdir, 'd')

    logger.info("Environment Information:\n" + collect_env_info())

    finalize_configs(is_training=True)

    # Create model

    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    # Compute the training schedule from the number of GPUs ...

    stepnum = cfg.TRAIN.STEPS_PER_EPOCH

    # warmup is step based, lr is epoch based

    init_lr = cfg.TRAIN.WARMUP_INIT_LR * min(8. / cfg.TRAIN.NUM_GPUS, 1.)

    warmup_schedule = [(0, init_lr), (cfg.TRAIN.WARMUP, cfg.TRAIN.BASE_LR)]

    warmup_end_epoch = cfg.TRAIN.WARMUP * 1. / stepnum

    lr_schedule = [(int(warmup_end_epoch + 0.5), cfg.TRAIN.BASE_LR)]

    factor = 8. / cfg.TRAIN.NUM_GPUS

    for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]):

        mult = 0.1 ** (idx + 1)

        lr_schedule.append(

            (steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult))

    logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule))

    logger.info("LR Schedule (epochs, value): " + str(lr_schedule))

    train_dataflow = get_train_dataflow()

    # This is what's commonly referred to as "epochs"

    total_passes = cfg.TRAIN.LR_SCHEDULE[-1] * 8 / train_dataflow.size()

    logger.info("Total passes of the training set is: {:.5g}".format(total_passes))

    # Create callbacks ...

    callbacks = [

        PeriodicCallback(

            ModelSaver(max_to_keep=10, keep_checkpoint_every_n_hours=1),

            every_k_epochs=cfg.TRAIN.CHECKPOINT_PERIOD),

        # linear warmup

        ScheduledHyperParamSetter(

            'learning_rate', warmup_schedule, interp='linear', step_based=True),

        ScheduledHyperParamSetter('learning_rate', lr_schedule),

        GPUMemoryTracker(),

        HostMemoryTracker(),

        ThroughputTracker(samples_per_step=cfg.TRAIN.NUM_GPUS),

        EstimatedTimeLeft(median=True),

        SessionRunTimeout(60000),   # 1 minute timeout

        GPUUtilizationTracker()

    ]

    if cfg.TRAIN.EVAL_PERIOD > 0:

        callbacks.extend([

            EvalCallback(dataset, *MODEL.get_inference_tensor_names(), args.logdir)

            for dataset in cfg.DATA.VAL

        ])

    if is_horovod and hvd.rank() > 0:

        session_init = None

    else:

        if args.load:

            # ignore mismatched values, so you can `--load` a model for fine-tuning

            session_init = SmartInit(args.load, ignore_mismatch=True)

        else:

            session_init = SmartInit(cfg.BACKBONE.WEIGHTS)

    traincfg = TrainConfig(

        model=MODEL,

        data=QueueInput(train_dataflow),

        callbacks=callbacks,

        steps_per_epoch=stepnum,

        max_epoch=cfg.TRAIN.LR_SCHEDULE[-1] * factor // stepnum,

        session_init=session_init,

        starting_epoch=cfg.TRAIN.STARTING_EPOCH

    )

    if is_horovod:

        trainer = HorovodTrainer(average=False)

    else:

        # nccl mode appears faster than cpu mode

        trainer = SyncMultiGPUTrainerReplicated(cfg.TRAIN.NUM_GPUS, average=False, mode='nccl')

    launch_train_with_config(traincfg, trainer)

Variables

STATICA_HACK